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Simple metric fits

Various scaling laws have been proposed for the dependence of folding rates on protein length.

Early on, Thirumalai proposed that the logarithms of folding rates should scale as the square

root of chain length based on polymer theory arguments.1 Later studies have suggested a

variety of functional forms for the scaling law.2–11 Fu and Wang found an O(24.306n2/3log(n))

time algorithm to fold 3D HP lattice models.12 A recent manuscript from Lane and Pande

argues that current available data is insufficient to infer the correct scaling law.13 We show

in Fig. S1 such correlations, using our data set of 93 proteins (detailed in Tables S3,S4).

Fig. S1 shows fits to experimental folding rates for 93 proteins, both two-state and multi-

state proteins. For the multi-state proteins, we fitted to the slowest phase. We show fits
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to some of the presently most prominent metrics: relative contact order (RCO),14 absolute

contact order (ACO),3–5 chain length (L), and the square root of chain length (
√
L).6–8,15

We fit the function log (kf ) = log (k0)− ax, where x is RCO, ACO,
√
L, or L using k0 and

a as adjustable parameters. The fit parameters are shown in Table S1.

The shading in the figures show 95% confidence intervals, which we obtain by bootstrap-

ping16,17 the data (resampling with replacement). Because
√
L gives a reasonable fit to the

data, and because the principal difference between RCO and ACO is simply that the latter

contains the chain length,3–5,7 a key conclusion is the importance of the chain length in

predicting protein folding rates, more important than the topology, per se.
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Figure S1: Folding rates vs. simple metrics (RCO, ACO,
√
L, and L). Proteins are colored

based on structural class. The black line is the fit to the data. The gray bands represent the
95% confidence interval. Fit parameters are tabulated in Table S1.
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The kinetic model

Our kinetic model is a “one-step” continuous time Markov process,18 a process that consists

of hops between adjacent sites along a 1D lattice. Each lattice site is labeled with an

integer. In our folding model, we refer to the lattice sites as “states” since they correspond

to configurational states of the protein. Our model has N + 1 states, where N is the number

of secondary structures in the protein. The states span the integer range c ∈ [0, 1, 2, . . . , N−

1, N ], where c represents the number of folded secondary structures.

The rate constants for forward (v) and reverse (r) hopping are

vc = (N − c) k1 (S1)

rc+1 =
(c+ 1) k1

K2K
nc+1−nc

3

(S2)

where k1 is a rate constant for the folding of an isolated secondary structure and N −

c represents the number of secondary structures still waiting to fold, given that c have

already folded. The rate constant for reverse hopping, rc+1, represents unfolding a secondary

structure, and we derive it from detailed balance:

w(c)vc = w(c+ 1)rc+1 (S3)

rc+1 = vc
w(c)

w(c+ 1)
(S4)

Where w(c) and w(c + 1) are the Boltzmann weights of states c and c + 1, respectively.

Substituting equation 1 from the main text for w(c) and w(c+ 1), we get

rc+1 = vc

N !
c!(N−c)!K

c
2K

nc
3

N !
(c+1)!(N−(c+1))!

Kc+1
2 K

nc+1

3

(S5)

= vc

[
(c+ 1)c!(N − c− 1)!

c!(N − c)(N − c− 1)!

] [
1

K2K
nc+1−nc

3

]
(S6)

where in the second step we divided through and rewrote (c+1)! as (c+1)c! and (N − (c+ 1))!
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as (N − c) (N − c− 1)!. Several combinatoric terms cancel, leaving:

rc+1 = vc

[
c+ 1

N − c

] [
1

K2K
nc+1−nc

3

]
(S7)

Finally, we replace vc with equation S1 to get the result shown above in equation S2:

rc+1 = (N − c) k1
[
c+ 1

N − c

] [
1

K2K
nc+1−nc

3

]
(S8)

=
(c+ 1)k1

K2K
nc+1−nc

3

(S9)

Escape from the folded state has an additional factor, Kf , which stabilizes the folded state:

rN =
Nk1

K2K
nN−nN−1

3 Kf

(S10)

which we can rewrite in terms of QF , the folded partition function

rN = k1N
KN−1

2 K
nN−1

3

QF

(S11)

Given the forward and reverse rate constants, we write the kinetics of our model as a master

equation:

dpc
dt

= rc+1pc+1 + vc−1pc−1 − (rc + vc)pc (S12)

Analytical expressions for the folding and unfolding rates

To compute the folding and unfolding rates, we follow Zwanzig19 and posit that the rate-

limiting step is the transition from the “first-excited state” (c = N − 1) to the folded state

(c = N). Based on Eqn. S12, we can write the rate of change of the population of the folded
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state as

dpN
dt

= vN−1pN−1 − rNpN (S13)

When we substitute Eqn. S1 for vN−1 and Eqn. S11 for rN , we get

dpN
dt

= k1pN−1 − k1N
KN−1

2 K
nN−1

3

QF

pN (S14)

We follow Zwanzig’s local thermodynamic equilibrium (LTE) approximation that says, if the

highest barrier is c = N − 1, all the states c < N rapidly equilibrate, conditional on pN(t),

pc(t) =
w(c)

QU

(1− pN (t)) for c < N (S15)

We substitute Eqn. S15 for pN−1 in Eqn. S14 to get

dpN
dt

= k1
w(N − 1)

QU

(1− pN (t))− k1N
KN−1

2 K
nN−1

3

QF

pN (S16)

= k1N
KN−1

2 K
nN−1

3

QU

(1− pN (t))− k1N
KN−1

2 K
nN−1

3

QF

pN (S17)

This shows that the rate of change of the folded state population is a competition between a

rate of gain, k1NK
N−1
2 K

nN−1

3 Q−1U , and a rate of loss, k1NK
N−1
2 K

nN−1

3 Q−1F . This is analogous

to a two-state folding reaction U � F in which

d[F ]

dt
= kf [U ]− ku[F ] (S18)
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Comparing Eqn. S18 with Eqn. S17, we see that kf is our rate of gain and ku is our rate of

loss:

kf = k1N
KN−1

2 K
nN−1

3

QU

(S19)

ku = k1N
KN−1

2 K
nN−1

3

QF

(S20)

This result is shown as Eqn. 10 and Eqn. 11 in the main text.

A more general expression for kf would be:

kf = k1
w(c‡)

QD

, (S21)

where w(c‡) is the weight of the state at the top of the barrier and QD is the partition

function for states c = 0, 1, . . . , c‡ (the left side of the barrier).

Numerical integration of master equation

The master equation (Eqn. S12) can be written in matrix form as

dP(t)

dt
= P(t)A (S22)

where P(t) is a vector of the state probabilities at time t and A is the transition rate matrix.

The matrix elements of A are: Each off-diagonal element Aij represents the transition rate

from state i to state j, but only adjacent states (that differ by one secondary structure) have

non-zero transition rates. Each diagonal element Aii is defined so that the rows sum to zero

(satisfying the condition that total probability density should be conserved).
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A =



−v0 v0 0 · · · 0 0 0
r1 −(r1 + v1) v1 · · · 0 0 0
0 r2 −(r2 + v2) · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −(rN−2 + vN−2) vN−2 0
0 0 0 · · · rN−1 −(rN−1 + vN−1) vN−1
0 0 0 · · · 0 rN −rN


(S23)

We can numerically solve equation S22 to get the state populations at time t based on

the populations at t = 0:

P(t) = P(0) eAt (S24)

We compute state probabilities as a function of time using equation S24 with initially all of

the probability density localized to the fully unfolded state (p0(0) = 1, pi(0) = 0 for i > 0).

We plot the results of one such calculation in Fig. 5 in the main text. Then, to get the

folding rate, we compute the rate spectrum using the ratespec python package of Voelz and

Pande.20 Given a time trace, ratespec calculates the rate spectrum using regularized linear

regression.

Eigendecomposition of rate matrix

We can also compute a folding rate from the eigen values of our rate matrix, A. We diago-

nalize A as follows:

A = BDB−1 (S25)

where B is a matrix of the eigenvectors of A and D is a diagonal matrix with the eigenvalues

of A along the diagonal. The smallest eigenvalue is λ1 = 0, and its corresponding eigenvector

represents the equilibrium populations of the states of the model. The folding rate is obtained

S7



-10 -5 0 5 10

log(s−1)

N = 3

-10 -5 0 5 10

log(s−1)

N = 5

-10 -5 0 5 10

log(s−1)

N = 10

-10 -5 0 5 10

log(s−1)

N = 15

-10 -5 0 5 10

log(s−1)

N = 20

-10 -5 0 5 10

log(s−1)

N = 25

Figure S2: Eigen spectra for different values of N. At each value of N, we see two-state
folding. There is a clear separation of time scales between the folding mode and faster
modes.

from the smallest non-zero eigenvalue, kf = −λ2. The larger eigenvalues represent dynamics

occuring on faster timescales. We observed two-state folding in our model: there was a clear

separation of timescales (Fig. S2).

Numerical validation of analytical expression for folding

rate

Here we show that our analytical expression for the folding rate (Eqn. S19) is consistent with

the results of numerical simulations of our master equation, as well as eigen decomposition

of the rate matrix. In Fig. S3, we plot the results from computing kf via the three different

approaches: (1) from Eqn. S19 (gray), (2) from numerical integration of master equation

(Eqn. S24), and (3) from the smallest non-zero eigenvalue. The overlap between the three

methods is very good. We find that the analytical expression for kf is a good approximation

for the more exact numerical evaluations of kf .
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Figure S3: Comparison of three methods for computing log(kf ) from our model. The agree-
ment between the three methods is very good. We use different dot sizes so that the results
from all three methods can be seen.

Fit to experimental data

Fig. S4 shows folding rates predicted from the model vs. experimental folding rates.

Uniqueness of fit to kinetic data

From our bootstrap fitting, we observed a strong inverse correlation between the best-fit val-

ues of log(K3) and log(K2) (Fig. S5A). The relationship is log(K3) = −0.33∗ log(K2)−0.18.

To address the uniqueness of our fit to the folding rate data, we’ve plotted the RMS error

of the fit vs. log(K2) and log(K3), in the vicinity of the optimal values for these parame-

ters (Fig. S5B). The lowest contour represents RMS error of 1.5 or less, and the region of

parameter space covered by this contour is roughly comparable to the 95% confidence in-

tervals determined via bootstrapping. During the bootstrap fitting, we found that–although

the values of K2 and K3 were randomized initially and unconstrained during the fitting

procedure–the parameters always converged to the narrow region shown here.
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Figure S4: Predicted folding rate vs. experimental folding rate. The colored points are
experimental values, and they are colored by structural class. The black line is the prediction
from the model. Fit parameters (95% CI): K2 = 0.037 (0.025, 0.058), K3 = 1.96 (1.67, 2.23).
We fixed k1 = 105.6s−1, and Kf was fitted to an equilibrium stability model, independent of
the folding rate fit. Fit quality (95% CI): R2 = 0.63 (0.49, 0.72), rms error = 1.30 (0.96, 1.65).
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Figure S5: (A) Results of bootstrap fitting. Each data point represents the value of log(K3)
and log(K2) determined during one bootstrap iteration. The gray line is the result of linear
regression (R2 = 0.92). The fit line represents: log(K3) = −0.33 ∗ log(K2) − 0.18. (B)
Contours in RMS error space for the global fit to the folding rate data. The best fit region
occupies a relatively narrow band of parameter space.
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Fitting parameter Kf to protein stability model

We used the linear relationship between chain length (L) and number of secondary structures

(N) (main text Fig. 6) to compute an average chain length (Lfit) at each N . Then, we used

the protein stability model of Dill and Ghosh21,22 to fit Kf for each N (for each Lfit). The

Dill & Ghosh model predicts stability as a function of L and temperature. We set T = 300K.

The fit values are tabulated below (Table S2).

Comparison with Zwanzig model

Here, for ease of comparison, we explain how the parameters in our model map on to the orig-

inal Zwanzig model.19 We’ve split Zwanzig’s K = νe−βU into our two equilibrium constants,

K2 and K3. We don’t break the equilibrium constants down into enthalpic and entropic

contributions, as Zwanzig does with his parameters U and ν, respectively. Zwanzig’s ν rep-

resents the number of incorrect configurations per residue. This chain entropy is one of the

components of our parameters, K2 and K3. Zwanzig’s stability gap e−βε corresponds to our

Kf . Our kinetic rate constant k1 is the same as Zwanzig’s. Our order parameter c represents

the number of correct secondary structures; Zwanzig’s order parameter was S, the number

of incorrect residues.

Equilibrium temperature dependence of model

Additional parameterization would be required for the current model to capture the tem-

perature dependence of folding. Here, we demonstrate a possible way of doing so. We split

the equilibrium constants into enthalpic and entropic components (for simplicity, we leave

Kf unsplit):
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Figure S6: (A) Population of the folded state vs. temperature. (B) State populations at
three temperatures. From top to bottom, they represent: below the midpoint, near the
midpoint, and above the midpoint. Parameters: N = 8, H2 = −0.6, H3 = −1.2, S2 = −8.6,
S3 = −2.6, Gf = −10 (with H’s and G’s in kcal mol−1, S’s in cal mol−1 K−1). These
parameters correspond to the equilibrium constants presented in the main text at T = 300 K:
log10(K2) = −1.4, log10(K3) = 0.29, and log10(Kf ) = 7.46.

K2 = e−(H2−TS2)β (S26)

K3 = e−(H3−TS3)β (S27)

Kf = e−Gfβ (S28)

As a proof of concept, we’ve computed equilibrium state populations as a function of

temperature for this modified version of our model. For this example, we used the following

parameter values: N = 8, H2 = −0.6, H3 = −1.2, S2 = −8.6, S3 = −2.6, Gf = −10

(with H’s and G’s in kcal mol−1, S’s in cal mol−1 K−1). These parameters correspond to

the equilibrium constants presented in the main text at T = 300 K: log10(K2) = −1.4,

log10(K3) = 0.29, and log10(Kf ) = 7.46. We selected the ∆H and ∆S values here; they

were not obtained by fitting to additional data. Our intent with this example is just to

demonstrate a way of extending the model, rather than fit to a specific protein.
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We plot the results in Fig. S6. Panel A shows the population of the folded state (c = 8)

vs. T, and panel B shows the populations of all states (c = 0, 1, . . . , 8) at three temperatures:

below the midpoint, near the midpoint, and above the midpoint. Fig. S6A shows that the

population of F undergoes a sharp unfolding transition, and Fig. S6B shows that near the

midpoint, most of the partly folded states have low populations.

This section was just a test that illustrates the model gives 2-state thermal cooperativity

with these parameters. We have not explored parameter space in a detailed way or attempted

to fit the temperature dependence data of specific proteins.

Exploring parameter space
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Figure S7: Barrier height (top) and barrier location (bottom) as a function of log(K2) (left
panels) and log(K3) (right panels). The black dashed lines indicate the best-fit values from
the main text. Parameters: N = 8, log(Kf ) = 7.46. On the left, log(K3) is fixed to 0.29.
On the right, log(K2) is fixed to −1.4.

Fig. S7 addresses the question of how the barrier changes with respect to K2 and K3.

Fig. S7 shows the barrier height and barrier location as a function of log(K2) and log(K3)

for a protein with N = 8 secondary structures. In the left panels, we fixed log(K3) to 0.29,
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its best-fit value from the main text. In the right panels, we fixed log(K2) fixed to its best-fit

value: log(K2) = −1.4.

From looking at the top-left panel of Fig. S7, we see that barrier height increases as

secondary structure formation become less favorable (left of the dashed line). As secondary

structure formation becomes more favorable (right of the dashed line), the barrier decreases

until the fully unfolded state (c = 0) becomes the state with the highest free energy (essen-

tially, a downhill folding situation).

We see a similar pattern in the top-right panel for log(K3): barrier height increases as

tertiary interactions become less favorable and decreases as tertiary interactions become

more favorable. The barrier decreases until the fully unfolded state (c = 1) becomes the

state with the highest free energy.

The bottom panels of Fig. S7 show that the location of the barrier has a non-linear

relationship with the parameters K2 and K3. The barrier is located at N − 1 for our best-fit

values, but at a certain point in parameter space, c = 0 or c = 1 becomes the state with the

highest free energy. The parameter regions in which N −1 is not the barrier also correspond

to parameter values that give poor fits to the folding rate data.

Proteins in data set

This set of proteins is largely identical to the set used by Ouyang and Liang.7 To that

set, we’ve added some additional two-state proteins from the data set of Zou and Ozkan,23

as well as the spectrins R15, R16, and R17,24 the homeodomain, Pit1,25 and the L9 helix

characterized by Mukherjee et al.26
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Table S1: Simple metric fit parameters and fit quality. Values in parentheses represent 95%
confidence intervals from bootstrapping.

Model R2 rmse log(k0) a

RCO 0.00 (0.00, 0.08) 3.46 (2.51, 4.22) 2.21 (0.53, 4.09) 0.43 (−5.56, 7.40)
ACO 0.59 (0.41, 0.75) 1.40 (0.96, 1.88) 5.33 (4.60, 6.03) 0.14 (0.11, 0.17)
L 0.48 (0.32, 0.61) 1.82 (1.39, 8.51) 4.39 (3.35, 9.64) 0.02 (0.01, 0.07)√
L 0.53 (0.35, 0.66) 1.62 (1.19, 2.03) 7.24 (6.33, 8.16) 0.55 (0.46, 0.65)
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Table S2: Fit values of model parameter Kf as a function of N at T = 300K.

N Lfit log (Kf )

1 14 1.75
2 28 3.21
3 41 4.37
4 55 5.23
5 69 5.79
6 83 6.35
7 97 6.90
8 111 7.46
9 124 8.02
10 138 8.58
11 152 9.15
12 166 9.71
13 180 10.27
14 194 10.84
15 207 11.41
16 221 11.99
17 235 12.56
18 249 13.15
19 263 13.74
20 277 14.33
21 290 14.94
22 304 15.55
23 318 16.18
24 332 16.81
25 346 17.46
26 360 18.11
27 373 18.77
28 387 19.44
29 401 20.11
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Table S3: List of two-state proteins in data set.

Name PDB Structure Length N log(kf )

a3D 2A3D α 73 3 5.52
Abp1 SH3 1JO8 β 58 5 1.07
AcP 1APS αβ 98 7 −0.62
AcP common 2ACY αβ 98 7 0.36
ADA2h 1O6X αβ 70 5 2.88
Albumin bd 1PRB α 53 3 5.60
bACBP 2ABD α 86 4 2.35
BBL 2WXC α 45 3 4.85
Bc Csp 1C9O β 66 5 3.13
c myb 1FEX α 59 3 3.79
CheW 1K0S αβ 151 11 3.23
CI2 2CI2 αβ 64 6 1.75
CspA 1MJC β 69 5 2.27
CspB 1CSP β 67 5 3.04
Cyclophilin A 1LOP αβ 164 12 2.87
CTL9 1DIVC αβ 92 7 1.42
E3BD WW 1W4E α 45 3 4.44
EC298 1RYK α 69 4 3.94
FBP WW 1E0L β 37 3 4.37
FKBP12 1FKB αβ 107 9 0.39
FNfn9 1FNF9 β 90 7 −0.40
fyn SH3 1SHF β 59 5 1.94
hbLBD BCKD 1K8M β 87 8 −0.31
HPr 1HDN αβ 85 7 1.17
Im7 1AYI α 86 4 3.13
Im9 1IMQ α 86 4 3.08
L23 1N88 αβ 96 5 1.31
L9 helix n/a α 14 1 5.90
lambda 1LMB α 87 5 3.69
MerP 2HQI αβ 72 6 0.08
NTL9 1DIVN αβ 56 5 2.94
P13 1QTU β 115 9 −0.16
PI3 SH3 1PKS β 76 7 −0.46
POB 1W4J α 51 3 5.32
protA Y15W 1SS1 α 60 3 4.99
protG 1PGB αβ 56 5 2.62
protG hairpin 1PGBb β 16 2 5.21
protL 2PTL αβ 62 5 1.78
PsaE 1PSE β 69 5 0.51
R15 R15 α 110 3 4.12

Continued
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Name PDB Structure Length N log(kf )

R16 R16 α 107 3 2.10
R17 R17 α 101 3 1.48
RafRBD 1RFA αβ 78 7 3.35
Rap1 1IDY α 54 3 3.56
S6 1RIS αβ 97 6 2.64
Sho1 SH3 2VKN β 75 5 0.92
spectrin SH3 1SHG β 57 5 1.70
src SH2 1SPR αβ 103 7 3.80
src SH3 1FMK β 56 5 1.77
sso7d 1SSO β 62 6 3.02
Tendamistat 2AIT β 74 7 1.83
Tm1083 1J5U αβ 127 8 2.98
Tm Csp 1G6P β 66 5 2.74
TNfn3 1TEN β 89 8 0.46
Trf1 1BA5 α 53 3 2.57
TrpCage 1L2Y α 20 1 5.38
Twitchin 1WIT β 93 8 0.18
U1A 1URN αβ 96 8 2.50
Ubq 1UBQ αβ 76 7 2.54
Urm1 2QJL αβ 99 8 1.12
Villin 1VII α 36 3 5.00
Villin 14T 2VIK αβ 126 7 2.95
WW pin 1PIN β 32 3 4.07
WW prototype 1E0M β 37 3 3.84
WW YAP 1K9Q β 40 3 3.63
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Table S4: List of multi-state proteins in data set.

Name PDB Structure Length N log(kf )

AlphaLactAlb 1HMK αβ 121 9 1.22
ApoPseuAz 1ADW β 123 10 0.28
BetaLactoGlob 1BEB β 156 11 −0.95
CheY 3CHY αβ 128 10 0.43
Colicin E7 1CEI α 85 4 2.52
CPGK 1PHPc αβ 219 18 −1.52
CRBP II 1OPA β 133 12 0.61
Cro 2CRO α 65 5 2.32
DHFR 1RA9 αβ 159 14 −1.09
EnHD 1ENH α 54 3 4.60
FF HYPA 1UZC α 69 4 3.77
FNfn10 1FNF10 β 93 7 2.38
GFP 1B9C β 224 13 −1.20
GroEL apical 1DK7 αβ 146 12 0.35
HEWL 1HEL αβ 129 9 0.54
HisActPhil 1HCD β 118 12 0.48
IFABP rat 1IFC β 131 12 1.48
ILBP 1EAL β 127 13 0.56
NHypF 1GXT αβ 88 7 1.91
NPGK 1PHPn αβ 175 16 1.00
P16 2A5E α 156 8 1.52
Pit1 1AU7 α 58 3 4.23
RNase HI 2RN2 αβ 155 9 0.61
StaphNuc 1JOO αβ 149 9 0.13
Suc1 1SCE αβ 97 7 1.81
TrypSynthAlpha 1QOPa αβ 265 19 −1.09
TrypSynthBeta 1QOPb αβ 390 27 −3.00
Twitchin Ig 1TIT β 89 7 1.56
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